首页> 外文OA文献 >Generalized Multi-view Embedding for Visual Recognition and Cross-modal Retrieval
【2h】

Generalized Multi-view Embedding for Visual Recognition and Cross-modal Retrieval

机译:用于视觉识别和交叉模态的广义多视图嵌入   恢复

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, the problem of multi-view embedding from different visual cuesand modalities is considered. We propose a unified solution for subspacelearning methods using the Rayleigh quotient, which is extensible for multipleviews, supervised learning, and non-linear embeddings. Numerous methodsincluding Canonical Correlation Analysis, Partial Least Sqaure regression andLinear Discriminant Analysis are studied using specific intrinsic and penaltygraphs within the same framework. Non-linear extensions based on kernels and(deep) neural networks are derived, achieving better performance than thelinear ones. Moreover, a novel Multi-view Modular Discriminant Analysis (MvMDA)is proposed by taking the view difference into consideration. We demonstratethe effectiveness of the proposed multi-view embedding methods on visual objectrecognition and cross-modal image retrieval, and obtain superior results inboth applications compared to related methods.
机译:本文考虑了基于不同视觉提示和方式的多视图嵌入问题。我们提出了使用瑞利商的子空间学习方法的统一解决方案,该解决方案可扩展用于多视图,监督学习和非线性嵌入。在同一个框架内使用特定的内在和罚图研究了包括标准相关分析,偏最小二乘回归和线性判别分析在内的多种方法。推导了基于核和(深度)神经网络的非线性扩展,其性能优于线性扩展。此外,考虑到视点差异,提出了一种新颖的多视点模块化判别分析(MvMDA)。我们证明了所提出的多视图嵌入方法在视觉对象识别和跨模态图像检索方面的有效性,并且在相关应用中均获得了优异的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号